Mining the LHC data for excesses

Angelo Monteux 1707.05783 w/ P. Asadi, M. Buckley, A. DiFranzo, D. Shih

Rutgers, UC Irvine

CIPANP 2018 Palm Springs, 05/30/2018 Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular

Introduction

So far, 36 fb⁻¹ of data released from 2015-2016 runs at 13 TeV (Moriond+summer 2017). More coming (2019?)

Clearly, we have not discovered the vanilla squark/gluino.

It seems that interest in the LHC has already declined in the pheno community.*

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Is this justified?

For the most part, experimental collaborations only test their data against a (relatively small) set of simplified models.

Can we interpret/discover a complicated *unexpected* signal at a hadron collider?

Most discoveries start with a $2-3\sigma$ excess... If we are to discover something before the HL-LHC, bumps should start appearing now.

It would be a shame if we did not make use of the LHC full potential by not looking in the right place.

Mining the LHC

A. Monteux (UCI)

Introduction

Vining the LHC dataset Rectangular aggregations

Avoiding bias

We should make sure to cast a net as wide as possible. ATLAS signal regions are optimized for a set of simplified models, while in CMS they form a (hyper)-grid by tiling the whole range of each kinematic variable.

First, take a detailed look at the data.

- E.g.
- CMS-PAS-SUS-16-036(jets + M_{T2})
- 213 signal regions! How to recognize an excess?

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset

Rectangular aggregations

H_T [GeV]

Example: CMS-PAS-SUS-16-036 (arXiv:1705.04650 - jets $+M_{T2}$)

2D projection each rectangle is one SR

Mining the LHC A. Monteux (UCI)

Introduction

Mining the LHC dataset

Example: CMS-PAS-SUS-16-036 (arXiv:1705.04650 - jets+M_{T2})

Color represents observed *single-bin* deviation from SM. More details later on. Mining the LHC

A. Monteux (UCI)

Introduction

dataset

Mining the LHC

Example: CMS-PAS-SUS-16-036 (arXiv:1705.04650 - jets $+ M_{T2}$)

Mining the LHC

Are we blinding ourselves?

Example: ATLAS monojet

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset

Rectangular aggregations

Conclusions

Data 2015+2016

Standard Mode

Z(→ vv) + jets

W(→ Iv) + jets

 $Z(\rightarrow I) + iets$

tt + single top

m(b, 2) = (500, 495) GeV

DD n=4 M =6400 GeV

1200 1400

Leading jet p_ [GeV]

, M___)= (400, 1000) GeV

Dibosons

1000

5/12

Are we blinding ourselves?

Example: ATLAS monojet

Is there a feature? The simplified models tested by ATLAS and CMS (DM mediator + jets) have smooth distributions. q_i \rightarrow a new model:

$$\mathcal{L} \supseteq \lambda \phi q_i^c q_j^c + g \phi^* q_i^c \psi + m_{\psi} \psi \psi' + g' \psi' N \tilde{N}$$

Possible justification: UV completion of "hylogenesis" model of asymmetric dark matter & baryogenesis. [Davoudiasl,Morrissey,Sigurdson,Tulin, 1008.2399,1106.4320] Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC

Mono- ϕ model

Local significance for this model goes up to $4.5\sigma!$

 q_j

Compatible with 3σ excess in orthogonal CMS SUSY search

Is this New Physics, or a red herring?

Mining the LHC

A. Monteux (UCI)

6

color triplet

scalar

 q_k

MET

First, CMS monojet seems to see nothing:

The background fits are different between ATLAS and CMS:

- ATLAS takes the shape from theory and fits overall normalization to CRs.
- CMS fits floating bin-by-bin normalization to CRs.

Both have correlated nuisance parameters, and use NNLO predictions from theory.

[1705.04664]

Systematic errors dominate! Previous 3.2fb⁻¹ATLAS monojet (bin-by-bin fit, but LO bg) seems to see no excess.

Waiting for data points from ATLAS to check compatibility...

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset

Rectangular aggregations

We did not run into this excess by chance.

Instead, we developed a simple, model-independent, datadriven method to find significant excesses in the LHC data. [Asadi,Buckley,Di Franzo,AM,Shih, 1707.05783]

Simple idea: A true signal will usually populate mutiple "neighboring" signal regions, while background fluctuations are more often confined to individual bins.

The only model-independent analysis is a single-bin analysis. Without having to assume a signal distribution over multiple bins, we can *aggregate* together nearby bins in a *rectangle R*.

Compute the likelihood of observing a deviation as large as observed in the data, assuming New Physics *only* contributes to that rectangle. Repeat for all aggregations... Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

This example in 2D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset

Rectangular aggregations

This example in 2D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

Mining the LHC

A. Monteux (UCI)

This example in 2D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

Mining the LHC

A. Monteux (UCI)

Introduction

Rectangular aggregations

This example in 2D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset

Rectangular aggregations

This example in 2D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

Mining the LHC

A. Monteux (UCI)

Example: rectangular aggregations in CMS036 Mining the LHC CMS036: best-fit events for individual RAs - 15N/53, Nb=0 Introduction Mining the LHC Mining the LHC

This example in 2D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

This example in 2D/3D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

This example in 2D/3D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

This example in 2D/3D. Can't plot in 4D/4+D, but algorithm can be applied automatically.

Results

We apply this technique to two "big" CMS SUSY searches, and the same excess seems to appear:

• CMS-PAS-SUS-16-036 (CMS036): jets+*M*_{T2}

R	01	Nj	N _b	H_T (GeV)	M_{T2} (GeV)	N_{σ}
2	b	1 - 3	0	250 - 450	200 - 300	2.95
	d	1 - 3	0	250 - 350	200 - 300	2.74

• CMS-PAS-SUS-16-033 (CMS033): jets+∉_T

ROI		Nj	N _b	H_T (GeV)	∉ _T (GeV)	Nσ
	а	2-6	0	300 - 500	300 - 500	2.96
2	с	2 – 4	0	300 - 500	300 - 500	2.64
	d	3 - 6	0	300 - 500	300 - 500	2.57

NB: same dataset, we cannot combine the significances. Here we found the monojet excess in the CMS data!!

Carlo, data-driven, bigger uncertainties. *nothing there?* (2)

• ATLAS060 (monojet):

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset

Rectangular aggregations

Results

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset

Rectangular aggregations

Conclusions

We	apply	this	tec	chn	ique	e to	o tw	Q	"big	.''	CMS	SUSY	′ s	search	es,
and	the sa	ame	exç	ess	see	mş	to	ap	pear	/					

• CMS-PAS-SUS 16-036 (CMS036); jets+ M_{T2}

	RO	I	Nj	X	N _b	Ι	H_T (GeV)	V	M_{T2} (GeV)		N_{σ}
	n	b	1 - 3	Λ	0		250 - 450	I	200 - 300		2.95
	2	d	1 - 3		0		250 - 350		200 - 300		2.74
٠	CMS-	PA	S-SUS-	1	6-03	3	(CMS033):	j	ets+∉ _T	Γ	
	RO	L	Nj		N _b		H_T (GeV)	I	∉ _T (GeV)	Г	N_{σ}
		а	2 – 6	V	0	1	300 - 500		300 - 500	Γ	2.96
	2	с	2 – 4	X	0	$\ $	300 - 500	$\langle \rangle$	300 — 500		2.64
		d	3 – 6		0	/	300 - 500		300 - 500		2.57

NB: same dataset, we cannot combine the significances. Here we found the monojet excess in the CMS data!!

NB: background fit different than CMS monojet! LO Monte-Carlo, data-driven, bigger uncertainties. *nothing there?*

• ATLAS060 (monojet):

ROI	Nj	p_T (GeV)	N_{σ}		
	1	300 - 450	4.66		

Conclusions

We have introduced a new technique to sift through the CMS datasets in search for deviations from the SM background.

The aggregation strategy itself is simple and yet powerful. Takes 5 minutes to write a script, seconds to hours to run with Minuit to find significance (minimize $\Delta \ln \mathcal{L}$). It only needs event counts (and error/covariance matrix). No Madgraph/Pythia/Delphes needed until model-building step.

Python/Jupyter notebook code on GitHub, anyone can play with it!

https://github.com/ilmonteux/LHC_rectangular_aggregation/

We have shown that there are interesting *previously unidentified* excesses. 3σ fluctuations come and go all the time, but the only way to know is to keep looking (another ~100fb⁻¹ recorded this year!).

There is value in keeping an eye on these hot spots, mostly to avoid raising thresholds and blind ourselves in the future.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Conclusions

We have introduced a new technique to sift through the CMS datasets in search for deviations from the SM background.

The aggregation strategy itself is simple and yet powerful. Takes 5 minutes to write a script, seconds to hours to run with Minuit to find significance (minimize $\Delta \ln \mathcal{L}$). It only needs event counts (and error/covariance matrix). No Madgraph/Pythia/Delphes needed until model-building step.

 $Python/Jupyter \ notebook \ code \ on \ GitHub, \ anyone \ can \ play \ with \ it!$

https://github.com/ilmonteux/LHC_rectangular_aggregation/

We have shown that there are interesting *previously unidentified* excesses. 3σ fluctuations come and go all the time, but the only way to know is to keep looking (another ~100fb⁻¹ recorded this year!).

There is value in keeping an eye on these hot spots, mostly to avoid raising thresholds and blind ourselves in the future.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Conclusions

We have introduced a new technique to sift through the CMS datasets in search for deviations from the SM background.

The aggregation strategy itself is simple and yet powerful. Takes 5 minutes to write a script, seconds to hours to run with Minuit to find significance (minimize $\Delta \ln \mathcal{L}$). It only needs event counts (and error/covariance matrix). No Madgraph/Pythia/Delphes needed until model-building step.

 $Python/Jupyter \ notebook \ code \ on \ GitHub, \ anyone \ can \ play \ with \ it!$

https://github.com/ilmonteux/LHC_rectangular_aggregation/

We have shown that there are interesting *previously unidentified* excesses. 3σ fluctuations come and go all the time, but the only way to know is to keep looking (another ~100fb⁻¹ recorded this year!).

There is value in keeping an eye on these hot spots, mostly to avoid raising thresholds and blind ourselves in the future.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

The important point is that the LHC dataset is not as bleak as many assume!

We are grateful to our ATLAS and CMS colleagues for making re-interpretating their results possible and (relatively) easy (e.g. correlation matrices).

And for being receptive to discuss with theorists finding excesses in their data.

Thanks for listening! Stay tuned for more data!

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Conclusions

12/12

The important point is that the LHC dataset is not as bleak as many assume!

We are grateful to our ATLAS and CMS colleagues for making re-interpretating their results possible and (relatively) easy (e.g. correlation matrices).

And for being receptive to discuss with theorists finding excesses in their data.

Thanks for listening! Stay tuned for more data!

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Extra slides

A. Monteux (UCI)

ntroduction

Mining the LHC dataset

aggregations

Conclusions

13/12

Cross-search compatibility

Tension with CMS048 not too bad in remaining regions (by construction). All other searches consistent in same range.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Control regions of ATLAS monojet

The extrapolation to signal regions depends on the CRs ($W \rightarrow \ell \nu$ +jets, $Z \rightarrow \ell \ell$ +jets). Is there a bump in the control regions?

A simple extension of the mono- ϕ model could populate the W control regions... Harder, need to find other control regions or cut much harder on the "W-ness" of the background.

 $\mathcal{L} \supseteq \lambda \phi q_i^c q_j^c + g \phi^* Q_L \psi_L + m_\psi \psi \psi' + m_\phi^2 |\phi|^2 + g' \psi_L L \tilde{N}$

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Conclusions

15/12

Look-elsewhere effect

What is the probability of seeing such a greater or equal fluctuation, after having looked *everywhere*?

- ATLAS monojet: simply a 4.5σ bump in 26 bins. Highly significant even after look-elsewhere. The important thing is to control *systematics*.
- model-independent: with 213 SRs (33,000 RAs), how often will the SM fluctuate in such a way to give at least a 3.5σ excess in at least one aggregation?

pseudo-experiments $\rightarrow 15\% \simeq 1.5\sigma$ global passing plausibility tests (?) $\sim 8\% \simeq 1.75\sigma$ global

• model-dependent: given this model, how often will the SM fluctuate in such a way to give at least a 3σ excess anywhere in the mass plane?

pseudo-experiments $ightarrow 5-3\% \simeq 1.95-2.2\sigma$ global

 what is the likelihood of a *compatible* fluctuations in the underlying data of two CMS searchs, or between ATLAS and CMS?
 cannot answer at our level

Only further scrutiny/data can tell us if it was a fluctuation or not.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular

Statistics

We use the standard LHC profile likelihood approach:

$$\mathcal{L}(\mu,\theta) = \prod_{i} \frac{(\mu s_i + b_i + \theta_i)^{n_i} e^{-(\mu s_i + b_i + \theta_i)}}{n_i!} \exp\left(-\frac{1}{2} \theta^T V^{-1} \theta\right)$$

[Cowan, Cranmer, Gross, Vitells, 1007.1727]

- n_i is the number of observed events in each bin.
- s_i is the number of BSM signal events, for a reference xsec
- μ is a cross section multiplier.

• b_i is the expected background count in the bin (extrapolated from control regions). θ_i are *nuisance parameters* for the background b_i , and their variation is modulated by the covariance matrix V. [CMS-NOTE-2017-001] great!

Maximizing the likelihood we get:

- local maximum for given μ : $\mathcal{L}(\mu, \hat{\theta}_{\mu})$ SM= $\mathcal{L}(0, \hat{\theta}_{0})$
- global maximum: $\mathcal{L}(\hat{\mu}, \hat{\hat{ heta}})$

construct delta log-likelihood
$$q_0 \equiv \begin{cases} -2 \ln \frac{\mathcal{L}(0,\theta_0)}{\mathcal{L}(\hat{\mu},\hat{\hat{\theta}})} & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$$

 χ^2 -distributed with 1 dof in the large N limit, $N_{\sigma} = \sqrt{q_0}$.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Conclusions

17/12

1.0

0.8

 $\phi \phi^* \rightarrow q q/q \psi$

A priori, initial parton flavors and the branching ratio into $q\psi$ are undefined:

• dijet resonance: $qq \rightarrow \phi \rightarrow qq$ (interestingly, a 2σ deviation in last CMS search near 1.2 TeV)

• pair production: $gg \rightarrow \phi \phi^*$: $2j + \not \in_T$, $3j + \not \in_T$, (2j)(2j).

Excess would be due to couplings of order 0.1 - 1 depending if it couples to light or heavy flavors.

Mining the LHC

A. Monteux (UCI)

ntroduction

Mining the LHC dataset Rectangular aggregations

A priori, initial parton flavors and the branching ratio into $q\psi$ are undefined:

- dijet resonance: $qq \rightarrow \phi \rightarrow qq$ (interestingly, a 2σ deviation in last CMS search near 1.2 TeV)
- pair production: $gg \rightarrow \phi \phi^*$: $2j + \not \in_T$, $3j + \not \in_T$, (2j)(2j).

Excess would be due to couplings of order 0.1 - 1 depending if it couples to light or heavy flavors.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

A priori, initial parton flavors and the branching ratio into $q\psi$ are undefined:

- dijet resonance: $qq \rightarrow \phi \rightarrow qq$ (interestingly, a 2σ deviation in last CMS search near 1.2 TeV)
- pair production: $gg \rightarrow \phi \phi^*$: $2j + \not \in_T$, $3j + \not \in_T$, (2j)(2j).

Excess would be due to couplings of order 0.1 - 1 depending if it couples to light or heavy flavors.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

A priori, initial parton flavors and the branching ratio into $q\psi$ are undefined:

- dijet resonance: $qq \rightarrow \phi \rightarrow qq$ (interestingly, a 2σ deviation in last CMS search near 1.2 TeV)
- pair production: $gg \rightarrow \phi \phi^*$: $2j + \not \in_T$, $3j + \not \in_T$, (2j)(2j).

Excess would be due to couplings of order 0.1 - 1 depending if it couples to light or heavy flavors.

Mining the LHC

A. Monteux (UCI)

Introduction

Mining the LHC dataset Rectangular aggregations

Recasting Pipeline

Mining the LHC

A. Monteux (UCI)

Our	pipeline:	
٩	Madgraph5	2.4.3

- Pythia 8.219
- Delphes 3.4
- (py)ROOT 6
- iminuit

validated against official plots

ICHEP	Moriond	Introductio
ATLAS-CONF-2016-037	CMS-PAS-SUS-16-032	
(ATLAS SSL/3L + MET)	(b's+MET)	Mining the
ATLAS-CONF-2016-052	CMS-PAS-SUS-16-033	dataset
(ATLAS multi-b+MET)	(jets+MHT)	
ATLAS-CONF-2016-054	CMS-PAS-SUS-16-036	aggregations
(ATLAS 1L + jets + MET)	(jets+MT2)	Conclusion
ATLAS-CONF-2016-057	CMS-PAS-SUS-16-035	
(ATLAS multijet [RPV])	(SS2L)	
ATLAS-CONF-2016-078	CMS-PAS-SUS-16-042	
(ATLAS 2-6 jets+MET)	$(1L+jets+MET - \Delta \Phi)$	
ATLAS-CONF-2016-094	CMS-PAS-SUS-16-051	
(ATLAS 1L + many jets)	(stop 1L)	
ATLAS-CONF-2016-095	CMS-PAS-SUS-17-001	
(ATLAS 8-10 jets)	(stop 2L)	
ATLAS-CONF-2016-077	ATLAS-CONF-2017-020	
(ATLAS stop 0L)	(stop 0L)	
ATLAS-CONF-2016-050	ATLAS-CONF-2017-021	
(ATLAS stop 1L)	(b's + MET)	
SUS-16-014-pas	ATLAS-CONF-2017-022	
(CMS jets+MET)	(2-6 jets + MET)	
SUS-16-028-pas	ATLAS-CONF-2017-013	
(CMS stop 1L)	(1L+jets [RPV])	
SUS-16-030-pas		
(CMS stop 0L boosted)		
ATLAS-CONF-2016-094		
(ATLAS 1L + jets [RPV])		
E00/ #		

- 50% "recast uncertainty"